Hastelloy C-2000 Alloy

Hastelloy C-2000 alloy introduces the novel configuration to the versatile Nickel-Chromium-Molybdenum alloy offering extensive resistance to the corrosive environments. By the excellent resistance to the oxidizing and reducing conditions, the **Hastelloy C-2000 alloy** offers an outstanding performance in the chemical processing operations.

Chemical composition of C-2000 alloy

Ni	Cu	Cr	Мо	Со	Fe	Si	Mn	С
59	1.6	23	16	2	3	0.08	1	0.01

rigical properties of hastendy c 2000 andy							
Density	At room temperature	8.50 g/cm3					
Thermal Conductivity	At room temperature	9.1 W/m∙K					
Mean Coefficient of Thermal Expansion	77oF to 200oF	12.4 m/m•K					
Electrical Resistivity	At room temperature	128 microhm-m					
Thermal Diffusivity	At room temperature	0.025 cm²/s					
Specific Heat	At room temperature	428 J/kg.°C					
Dynamic Modulus of Elasticity	At room temperature	207 GPa					
Melting Point	1328-1358°C						

Physical properties of hastelloy C – 2000 alloy

Corrosion Resistance by Hastelloy C-2000 Alloy

To make the nickel alloy resistant to corrosive media, it needs the high concentration of chromium by which the alloy becomes able to resist the wider oxidizing media like ferric acids, cupric ions and more. The reducing media like hydrated hydrochloric or sulfuric acid needs high concentration of molybdenum as well as tungsten.

With the help of high content of chromium, the C-2000 corrosion resistance alloy offers excellent resistance to oxidizing media like nitric acid and solutions like ferric ions, cupric ions and dissolved oxygen.

The tensile properties of **Hastelloy C-2000 corrosion resistance alloy** at the room temperature are provided below:

Thickness, inch	Tensile Strength, ksi	Yield Strength, ksi	Elongation, %
0.063	109.0	52.0	64.0
0.125	111.0	57.0	63.0
0.250	113.0	55.0	62.0
0.500	110.0	50.0	68.0
1.00	109.0	54.0	63.0

The Hastelloy C-2000 solves the alloy design dilemma. The large magnitude of chromium is mixed with molybdenum and copper, adequate to offer resistance to the reducing conditions while no loss of metallurgical consistency. In the hot reducing concentration of sulfuric acid, the C-2000 alloy offers better performance than the alloy C-276. The C-2000 alloy also offers excellent resistance to the boiling and hydrated hydrochloric acid. On the other side the rate of corrosion increases to 20 mpy at the concentration between 1 to 1.5 wt %. The C-2000 alloy offers superior resistance to corrosion at the concentration of 3% weight.

Pitting and Crevice corrosion resistance

The **Hastelloy C-2000 corrosion resistance alloy** also offers resistance to pitting and crevice corrosion that is widely introduced in the commercial processes. In order to determine the pitting and crevice corrosion provided by Hastelloy C-2000, it is evaluated at the critical crevice and pitting temperature in the acidic medium of 6 % ferric chloride by following the ASTM G 48 procedures.

ALLOY	Critical Crevice Temperatures, oC	Critical Pitting Temperatures, oC
316L	0	15
254SMO	30	60
625	40	100
C-22	80	>120
C-276	55	>120
C-2000	80	>120

The above data shows the minimum temperature at which the pitting and crevice corrosion occurs in the acidic ferric chloride in 72 hours. Another acidic solution is 11.5 % sulfuric acid, 1.2 % hydrochloric acid, 1 % ferric chloride and 1 % cupric chloride that is widely used to evaluate the resistance to pitting corrosion. This solution is called as green death.

The following table shows the comparison of critical pitting temperature of Hastelloy C-2000 with other alloys:

Alloy	Critical Pitting Temperature, oC
316L	25
625	75
C-4	90
C-22	120
C-276	105
C-2000	110

Seawater is one of the strongest corrosion media that consists of aqueous salts. It is bumped into marine operations and seashore oil refineries as well as used as coolant in the coastal industries. The crevice test is conducted in the still and dynamic water at 29oC or 3oC. Double samples of every testing alloy in the still and dynamic water are evaluated for 180 days. Every sample consists of double crevice spots.

ALLOY	Still water	Still water	Dynamic	Dynamic
			water	water
	No. of spots	Depth, mm	No. of spots	Depth, mm
316L	2	1.80	2	0.32
254SMO	2	1.25	2	0.01
625	2	0.11	2	<0.01
C-22	0	0	0	0
C-276	1	0.12	0	0
C-2000	0	0	0	0

Stress Corrosion Cracking:

Boiling solution of 45% magnesium chloride is used to evaluate the resistance to stress corrosion cracking offered by Hastelloy C-2000 alloy. The following table shows the time needed to cause cracks in the different alloy's materials:

Alloy	Cracking Period
316L	2 hours

254MO	2 hours
625	No cracks in 1008 hours
C-22	No cracks in 1008 hours
C-276	No cracks in 1008 hours
C-2000	No cracks in 1008 hours

Mechanical Properties of Hastelloy C-2000 Alloy:

Form	Annealing	Thickness/	Yield	Tensile	Elongation
	Temperature	Diameter	Strength	Strength	
	оС	Mm	MPA	MPa	%
Sheet	1163	0.6	372	752	61
Sheet	1163	2.0	400	786	62
Plate	1149	4.8	407	745	63
Plate	1149	6.4	393	731	63
Bar	1149	9.7	331	745	67
Bar	1149	19.1	345	738	69

Welding of Hastelloy C-2000 Alloy

The C-2000 alloy has similar welding, forming, and machining features that are equivalent to C-276 alloy. In order to weld the Hastelloy C- series alloys, basically three methods are followed.

For sheet welds and plate root passes, GTAW or Gas tungsten arc welding process is recommended. For plate welding, the gas metal arc welding method is recommended.

For field welding, the shielded metal arc process is preferred by using the coated electrodes. The submerged arc welding process is not preferred because it is featured with extensive heating of the primary metal and slow weld quenching. In order to decrease the precipitation of second phase in the heat affected welding zones, high interpass temperature up to 93oC is preferred. In these processes, welding of the cold treated alloy is not preferred because these may get sensitized quickly and cause residual stress. The water quenching after the complete solution annealing is preferred for cold processed alloy prior to welding. The grease, oil and other contaminated particles should be removed.

Filler Metal

Hastelloy C-2000 filler wire is preferred for gas tungsten arc and gas metal arc welding. Hastelloy C-2000 electrodes are preferred for shielded metal arc welding.

Impact properties of Weldments

Welding	Form	Position	Temp, oC	Impact Strength, J
Process				
Synergic Gas	Transverse Sample from	Mid-Weld	-196	142
Metal arc	Welded Plate of Thickness	Heated	-196	203
welding	12.7 mm./0.5 in	Region		
Shielded metal	All Weld Metal Sample	In Weld	Room	71
arc welding	taken from Plate Weld		Temp	
			-196	45

The tensile properties of weldments are shown as following:

Welding	Form	Temp	Yield	Tensile	Elongati
Process			strength	Strength	on
		оС	MPa	MPa	%
Gas	Transverse Sample from Welded	260	326	642	42.1
Tungsten	Plate of Thickness of 12.7 mm/0.5 in				
Arc Welding	All Weld Metal Sample of Diameter	260	391	614	47.4
(GTAW	12.7 mm/0.5 in from Cruciform				

Synergic	Transverse Sample from Welded	260	352	654	43.1
Gas Metal Arc	Plate of Thickness of 12.7 mm/0.5 in				
Welding	All Weld Metal Sample of Diameter	260	394	620	46.4
(GMAW)	12.7 mm/0.5 in from Cruciform				
Shielded	Transverse Sample from Welded	Room	364	718	58.1
Metal Arc	Plate of Thickness of 25.4 mm/1.0 in	Temp.			
Welding	All Weld Metal Sample of Diameter	450	386	565	43.9
	12.7 mm/0.5 in from Cruciform				

Machining of Hastelloy C-2000 alloy

In the below table the instructions are provided to perform the machining process on the wrought materials. The particular machining tasks change with the conditions of operation.

Operations	Carbide Tools	High Speed Steel Tools
Drilling	C-2 grade not recommended, but tipped drills may be	M-33, M-40 series1
	successful on rigid setup of no great depth. The web	or T-15: Use short
	must be thinned to reduce thrust Use 135° included	drills, heavy web, 135°
	angle on point, Gun drill can be used. Speed: 50 sfm.	crank-shaft, grind
	Oil2 or water-base coolant. Coolant-feed carbide	points wherever
	tipped drills may be economical in some setups	possible. Speed: 10-15
Normal	C-2 or C-3 grade: Negative rake square insert, 45° SCEA4	sfm Feed: 0.001 in.
Roughing;	, 1/32 in. nose radius Tool holder: 5° neg. back rake, 5°	rev. 1/8 in. dia. 0.002
Turning or	neg. Speed: 90 sfm depending on rigidity of set up,	in. rev. 1/4 in. dia
Facing	0.010 in. feed, 0.150 inch., depth of cut, Dry , oil, or	0.003 in. rev. 1/2 in.
	water-base coolant.	dia. 0.005 in. rev. 3/4
Finishing;	C-2 or C-3 grade: Positive rake square insert, if possible,	in. dia 0.007 in. rev. 1
Turning or	45° SCEA, 1/32 in. nose radius. Tool holder: 5° pos. back	in. dia. Oil or water-
Facing	rake, 5° pos. side rake. Speed: 95-110 sfm, 0.005-0.007	base coolant. Use
	in. feed, 0.040 in. depth of cut. Dry or water-base	coolant feed drills if
	coolant	possible.

Heat Processing of Hastelloy

Wrought Hastelloy C – 2000 alloy is kept into solution annealed form, if specified. The standard solution annealing processing includes heating up to 1135oC, subsequently air or water quenching is performed. The components that are hot forged are solution annealed before final forging.

Fabrication

The Hastelloy C-2000 alloy offers superior fabrication properties, and cold forging is the recommended method of shaping. It can be conveniently work processed due to its high ductility. It is normally stiffer as compare to the austenitic stainless steels so more energy is needed while cold forging.

Applications of Hastelloy C-2000 Alloy

- 1. Chemical processing industrial reactors, heat exchangers
- 2. Pharmaceutical industrial reactors and dryers
- 3. Flue gas desulfurization systems.

Hastelloy C-2000 Alloy

Heanjia Super Metals Co., Ltd