
PHPExcel User Documentation –
Reading Spreadsheet Files

Author: Mark Baker
Version: 1.8.0
Date: 02 March 2014

Contents

PHPExcel User Documentation – Reading Spreadsheet Files...1
1. Spreadsheet File Formats...1
2. Security..3
3. Loading a Spreadsheet File...4
4. Creating a Reader and Loading a Spreadsheet File...5
5. Spreadsheet Reader Options..6

5.1. Reading Only Data from a Spreadsheet File..6
5.2. Reading Only Named WorkSheets from a File...7
5.3. Reading Only Specific Columns and Rows from a File (Read Filters)......................8
5.4. Combining Multiple Files into a Single PHPExcel Object......................................11
5.5. Combining Read Filters with the setSheetIndex() method to split a large CSV file
across multiple Worksheets...12
5.6. Pipe or Tab Separated Value Files..14
5.7. A Brief Word about the Advanced Value Binder...15

6. Error Handling..16
7. Helper Methods..17

PHPExcel User Documentation – Reading Spreadsheet Files

1. Spreadsheet File Formats
PHPExcel can read a number of different spreadsheet file formats, although not all
features are supported by all of the readers. Check the Functionality Cross-Reference
document (Functionality Cross-Reference.xls) for a list that identifies which features are
supported by which readers.

Currently, PHPExcel supports the following File Types for Reading:

Excel5
The Microsoft Excel™ Binary file format (BIFF5 and BIFF8) is a binary file format
that was used by Microsoft Excel™ between versions 95 and 2003. The format is
supported (to various extents) by most spreadsheet programs. BIFF files normally
have an extension of .xls. Documentation describing the format can be found
online at http://msdn.microsoft.com/en-us/library/cc313154(v=office.12).aspx or
from http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-
C7B2C1D997DB/[MS-XLS].pdf (as a downloadable PDF).

Excel2003XML
Microsoft Excel™ 2003 included options for a file format called SpreadsheetML.
This file is a zipped XML document. It is not very common, but its core features are
supported. Documentation for the format can be found at
http://msdn.microsoft.com/en-us/library/aa140066%28office.10%29.aspx though
it’s sadly rather sparse in its detail.

Excel2007
Microsoft Excel™ 2007 shipped with a new file format, namely Microsoft Office
Open XML SpreadsheetML, and Excel 2010 extended this still further with its new
features such as sparklines. These files typically have an extension of .xlsx. This
format is based around a zipped collection of eXtensible Markup Language (XML)
files. Microsoft Office Open XML SpreadsheetML is mostly standardized in ECMA
376 (http://www.ecma-
international.org/news/TC45_current_work/TC45_available_docs.htm) and ISO
29500.

OOCalc
aka Open Document Format (ODF) or OASIS, this is the OpenOffice.org XML File
Format for spreadsheets. It comprises a zip archive including several components
all of which are text files, most of these with markup in the eXtensible Markup
Language (XML). It is the standard file format for OpenOffice.org Calc and
StarCalc, and files typically have an extension of .ods. The published specification
for the file format is available from the OASIS Open Office XML Format Technical
Committee web page (http://www.oasis-open.org/committees/tc_home.php?
wg_abbrev=office#technical). Other information is available from the
OpenOffice.org XML File Format web page (http://xml.openoffice.org/general.html),
part of the OpenOffice.org project.

SYLK
This is the Microsoft Multiplan Symbolic Link Interchange (SYLK) file format.
Multiplan was a predecessor to Microsoft Excel™. Files normally have an extension
of .slk. While not common, there are still a few applications that generate SYLK
files as a cross-platform option, because (despite being limited to a single
worksheet) it is a simple format to implement, and supports some basic data and
cell formatting options (unlike CSV files).

Gnumeric
The Gnumeric file format is used by the Gnome Gnumeric spreadsheet application,
and typically files have an extension of .gnumeric. The file contents are stored

PHPExcel User Documentation – Reading Spreadsheet Files 1

http://xml.openoffice.org/general.html
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office#technical
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=office#technical
http://www.ecma-international.org/news/TC45_current_work/TC45_available_docs.htm
http://www.ecma-international.org/news/TC45_current_work/TC45_available_docs.htm
http://msdn.microsoft.com/en-us/library/aa140066(office.10).aspx
http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-C7B2C1D997DB/%5BMS-XLS%5D.pdf
http://download.microsoft.com/download/2/4/8/24862317-78F0-4C4B-B355-C7B2C1D997DB/%5BMS-XLS%5D.pdf
http://msdn.microsoft.com/en-us/library/cc313154(v=office.12).aspx

using eXtensible Markup Language (XML) markup, and the file is then compressed
using the GNU project's gzip compression library.
http://projects.gnome.org/gnumeric/doc/file-format-gnumeric.shtml

CSV
Comma Separated Value (CSV) file format is a common structuring strategy for
text format files. In CSV flies, each line in the file represents a row of data and
(within each line of the file) the different data fields (or columns) are separated
from one another using a comma (“,”). If a data field contains a comma, then it
should be enclosed (typically in quotation marks ("). Sometimes tabs “\t” or the
pipe symbol (“|”) are used as separators instead of a comma. Because CSV is a
text-only format, it doesn't support any data formatting options.

PHPExcel User Documentation – Reading Spreadsheet Files 2

http://projects.gnome.org/gnumeric/doc/file-format-gnumeric.shtml

2. Security
XML-based formats such as OfficeOpen XML, Excel2003 XML, OASIS and Gnumeric are
susceptible to XML External Entity Processing (XXE) injection attacks (for an explanation
of XXE injection see http://websec.io/2012/08/27/Preventing-XEE-in-PHP.html) when
reading spreadsheet files. This can lead to:

 Disclosure whether a file is existent
 Server Side Request Forgery
 Command Execution (depending on the installed PHP wrappers)

To prevent this, PHPExcel sets libxml_disable_entity_loader to true for the XML-based
Readers by default.

PHPExcel User Documentation – Reading Spreadsheet Files 3

http://websec.io/2012/08/27/Preventing-XEE-in-PHP.html

3. Loading a Spreadsheet File
The simplest way to load a workbook file is to let PHPExcel's IO Factory identify the file
type and load it, calling the static load() method of the PHPExcel_IOFactory class.

$inputFileName = './sampleData/example1.xls';

/** Load $inputFileName to a PHPExcel Object **/
$objPHPExcel = PHPExcel_IOFactory::load($inputFileName);

See Examples/Reader/exampleReader01.php for a working example of this code.

The load() method will attempt to identify the file type, and instantiate a loader for that
file type; using it to load the file and store the data and any formatting in a PHPExcel
object.
The method makes an initial guess at the loader to instantiate based on the file
extension; but will test the file before actually executing the load: so if (for example) the
file is actually a CSV file that has been given a .xls extension (quite a common practise),
it will reject the Excel5 loader that it would normally use for a .xls file; and test the file
using the other loaders until it finds the appropriate loader, and then use that to read the
file.
While easy to implement in your code, and you don't need to worry about the file type;
this isn't the most efficient method to load a file; and it lacks the flexibility to configure
the loader in any way before actually reading the file into a PHPExcel object.

PHPExcel User Documentation – Reading Spreadsheet Files 4

4. Creating a Reader and Loading a Spreadsheet File
If you know the file type of the spreadsheet file that you need to load, you can instantiate
a new reader object for that file type, then use the reader's load() method to read the file
to a PHPExcel object. It is possible to instantiate the reader objects for each of the
different supported filetype by name. However, you may get unpredictable results if the
file isn't of the right type (e.g. it is a CSV with an extension of .xls), although this type of
exception should normally be trapped.

$inputFileName = './sampleData/example1.xls';

/** Create a new Excel5 Reader **/
$objReader = new PHPExcel_Reader_Excel5();
// $objReader = new PHPExcel_Reader_Excel2007();
// $objReader = new PHPExcel_Reader_Excel2003XML();
// $objReader = new PHPExcel_Reader_OOCalc();
// $objReader = new PHPExcel_Reader_SYLK();
// $objReader = new PHPExcel_Reader_Gnumeric();
// $objReader = new PHPExcel_Reader_CSV();
/** Load $inputFileName to a PHPExcel Object **/
$objPHPExcel = $objReader->load($inputFileName);

See Examples/Reader/exampleReader02.php for a working example of this code.

Alternatively, you can use the IO Factory's createReader() method to instantiate the
reader object for you, simply telling it the file type of the reader that you want
instantiating.

$inputFileType = 'Excel5';
// $inputFileType = 'Excel2007';
// $inputFileType = 'Excel2003XML';
// $inputFileType = 'OOCalc';
// $inputFileType = 'SYLK';
// $inputFileType = 'Gnumeric';
// $inputFileType = 'CSV';
$inputFileName = './sampleData/example1.xls';

/** Create a new Reader of the type defined in $inputFileType **/
$objReader = PHPExcel_IOFactory::createReader($inputFileType);
/** Load $inputFileName to a PHPExcel Object **/
$objPHPExcel = $objReader->load($inputFileName);

See Examples/Reader/exampleReader03.php for a working example of this code.

If you're uncertain of the filetype, you can use the IO Factory's identify() method to
identify the reader that you need, before using the createReader() method to instantiate
the reader object.

PHPExcel User Documentation – Reading Spreadsheet Files 5

$inputFileName = './sampleData/example1.xls';

/** Identify the type of $inputFileName **/
$inputFileType = PHPExcel_IOFactory::identify($inputFileName);
/** Create a new Reader of the type that has been identified **/
$objReader = PHPExcel_IOFactory::createReader($inputFileType);
/** Load $inputFileName to a PHPExcel Object **/
$objPHPExcel = $objReader->load($inputFileName);

See Examples/Reader/exampleReader04.php for a working example of this code.

PHPExcel User Documentation – Reading Spreadsheet Files 6

5. Spreadsheet Reader Options
Once you have created a reader object for the workbook that you want to load, you have
the opportunity to set additional options before executing the load() method.

5.1. Reading Only Data from a Spreadsheet File
If you're only interested in the cell values in a workbook, but don't need any of the cell
formatting information, then you can set the reader to read only the data values and any
formulae from each cell using the setReadDataOnly() method.

$inputFileType = 'Excel5';
$inputFileName = './sampleData/example1.xls';

/** Create a new Reader of the type defined in $inputFileType **/
$objReader = PHPExcel_IOFactory::createReader($inputFileType);
/** Advise the Reader that we only want to load cell data **/
$objReader->setReadDataOnly(true);
/** Load $inputFileName to a PHPExcel Object **/
$objPHPExcel = $objReader->load($inputFileName);

See Examples/Reader/exampleReader05.php for a working example of this code.

It is important to note that Workbooks (and PHPExcel) store dates and times as simple
numeric values: they can only be distinguished from other numeric values by the format
mask that is applied to that cell. When setting read data only to true, PHPExcel doesn't
read the cell format masks, so it is not possible to differentiate between dates/times and
numbers.
The Gnumeric loader has been written to read the format masks for date values even
when read data only has been set to true, so it can differentiate between dates/times and
numbers; but this change hasn't yet been implemented for the other readers.

Reading Only Data from a Spreadsheet File applies to Readers:

Excel2007 YES Excel5 YES Excel2003XML YES
OOCalc YES SYLK NO Gnumeric YES
CSV NO

PHPExcel User Documentation – Reading Spreadsheet Files 7

5.2. Reading Only Named WorkSheets from a File
If your workbook contains a number of worksheets, but you are only interested in reading
some of those, then you can use the setLoadSheetsOnly() method to identify those sheets
you are interested in reading.

To read a single sheet, you can pass that sheet name as a parameter to the
setLoadSheetsOnly() method.

$inputFileType = 'Excel5';
$inputFileName = './sampleData/example1.xls';
$sheetname = 'Data Sheet #2';

/** Create a new Reader of the type defined in $inputFileType **/
$objReader = PHPExcel_IOFactory::createReader($inputFileType);
/** Advise the Reader of which WorkSheets we want to load **/
$objReader->setLoadSheetsOnly($sheetname);
/** Load $inputFileName to a PHPExcel Object **/
$objPHPExcel = $objReader->load($inputFileName);

See Examples/Reader/exampleReader07.php for a working example of this code.

If you want to read more than just a single sheet, you can pass a list of sheet names as
an array parameter to the setLoadSheetsOnly() method.

$inputFileType = 'Excel5';
$inputFileName = './sampleData/example1.xls';
$sheetnames = array('Data Sheet #1','Data Sheet #3');

/** Create a new Reader of the type defined in $inputFileType **/
$objReader = PHPExcel_IOFactory::createReader($inputFileType);
/** Advise the Reader of which WorkSheets we want to load **/
$objReader->setLoadSheetsOnly($sheetnames);
/** Load $inputFileName to a PHPExcel Object **/
$objPHPExcel = $objReader->load($inputFileName);

See Examples/Reader/exampleReader08.php for a working example of this code.

To reset this option to the default, you can call the setLoadAllSheets() method.

$inputFileType = 'Excel5';
$inputFileName = './sampleData/example1.xls';

/** Create a new Reader of the type defined in $inputFileType **/
$objReader = PHPExcel_IOFactory::createReader($inputFileType);
/** Advise the Reader to load all Worksheets **/
$objReader->setLoadAllSheets();
/** Load $inputFileName to a PHPExcel Object **/
$objPHPExcel = $objReader->load($inputFileName);

See Examples/Reader/exampleReader06.php for a working example of this code.

Reading Only Named WorkSheets from a File applies to Readers:

Excel2007 YES Excel5 YES Excel2003XML YES
OOCalc YES SYLK NO Gnumeric YES

PHPExcel User Documentation – Reading Spreadsheet Files 8

CSV NO

PHPExcel User Documentation – Reading Spreadsheet Files 9

5.3. Reading Only Specific Columns and Rows from a File
(Read Filters)
If you are only interested in reading part of a worksheet, then you can write a filter class
that identifies whether or not individual cells should be read by the loader. A read filter
must implement the PHPExcel_Reader_IReadFilter interface, and contain a readCell()
method that accepts arguments of $column, $row and $worksheetName, and return a
boolean true or false that indicates whether a workbook cell identified by those
arguments should be read or not.

$inputFileType = 'Excel5';
$inputFileName = './sampleData/example1.xls';
$sheetname = 'Data Sheet #3';

/** Define a Read Filter class implementing PHPExcel_Reader_IReadFilter *
/
class MyReadFilter implements PHPExcel_Reader_IReadFilter
{
 public function readCell($column, $row, $worksheetName = '') {
 // Read rows 1 to 7 and columns A to E only
 if ($row >= 1 && $row <= 7) {
 if (in_array($column,range('A','E'))) {
 return true;
 }
 }
 return false;
 }
}

/** Create an Instance of our Read Filter **/
$filterSubset = new MyReadFilter();

/** Create a new Reader of the type defined in $inputFileType **/
$objReader = PHPExcel_IOFactory::createReader($inputFileType);
/** Tell the Reader that we want to use the Read Filter **/
$objReader->setReadFilter($filterSubset);
/** Load only the rows and columns that match our filter to PHPExcel **/
$objPHPExcel = $objReader->load($inputFileName);

See Examples/Reader/exampleReader09.php for a working example of this code.

This example is not particularly useful, because it can only be used in a very specific
circumstance (when you only want cells in the range A1:E7 from your worksheet. A
generic Read Filter would probably be more useful:

PHPExcel User Documentation – Reading Spreadsheet Files 10

/** Define a Read Filter class implementing PHPExcel_Reader_IReadFilter *
/
class MyReadFilter implements PHPExcel_Reader_IReadFilter
{
 private $_startRow = 0;
 private $_endRow = 0;
 private $_columns = array();

 /** Get the list of rows and columns to read */
 public function __construct($startRow, $endRow, $columns) {
 $this->_startRow = $startRow;
 $this->_endRow = $endRow;
 $this->_columns = $columns;
 }

 public function readCell($column, $row, $worksheetName = '') {
 // Only read the rows and columns that were configured
 if ($row >= $this->_startRow && $row <= $this->_endRow) {
 if (in_array($column,$this->_columns)) {
 return true;
 }
 }
 return false;
 }
}

/** Create an Instance of our Read Filter, passing in the cell range **/
$filterSubset = new MyReadFilter(9,15,range('G','K'));

See Examples/Reader/exampleReader10.php for a working example of this code.

This can be particularly useful for conserving memory, by allowing you to read and
process a large workbook in “chunks”: an example of this usage might be when
transferring data from an Excel worksheet to a database.

PHPExcel User Documentation – Reading Spreadsheet Files 11

$inputFileType = 'Excel5';
$inputFileName = './sampleData/example2.xls';

/** Define a Read Filter class implementing PHPExcel_Reader_IReadFilter *
/
class chunkReadFilter implements PHPExcel_Reader_IReadFilter
{
 private $_startRow = 0;
 private $_endRow = 0;

 /** Set the list of rows that we want to read */
 public function setRows($startRow, $chunkSize) {
 $this->_startRow = $startRow;
 $this->_endRow = $startRow + $chunkSize;
 }

 public function readCell($column, $row, $worksheetName = '') {
 // Only read the heading row, and the configured rows
 if (($row == 1) ||
 ($row >= $this->_startRow && $row < $this->_endRow)) {
 return true;
 }
 return false;
 }
}

/** Create a new Reader of the type defined in $inputFileType **/
$objReader = PHPExcel_IOFactory::createReader($inputFileType);

/** Define how many rows we want to read for each "chunk" **/
$chunkSize = 2048;
/** Create a new Instance of our Read Filter **/
$chunkFilter = new chunkReadFilter();

/** Tell the Reader that we want to use the Read Filter **/
$objReader->setReadFilter($chunkFilter);

/** Loop to read our worksheet in "chunk size" blocks **/
for ($startRow = 2; $startRow <= 65536; $startRow += $chunkSize) {
 /** Tell the Read Filter which rows we want this iteration **/
 $chunkFilter->setRows($startRow,$chunkSize);
 /** Load only the rows that match our filter **/
 $objPHPExcel = $objReader->load($inputFileName);
 // Do some processing here
}

See Examples/Reader/exampleReader12.php for a working example of this code.

Using Read Filters applies to:

Excel2007 YES Excel5 YES Excel2003XML YES
OOCalc YES SYLK NO Gnumeric YES
CSV YES

PHPExcel User Documentation – Reading Spreadsheet Files 12

5.4. Combining Multiple Files into a Single PHPExcel Object
While you can limit the number of worksheets that are read from a workbook file using
the setLoadSheetsOnly() method, certain readers also allow you to combine several
individual “sheets” from different files into a single PHPExcel object, where each
individual file is a single worksheet within that workbook. For each file that you read, you
need to indicate which worksheet index it should be loaded into using the setSheetIndex()
method of the $objReader, then use the loadIntoExisting() method rather than the load()
method to actually read the file into that worksheet.

$inputFileType = 'CSV';
$inputFileNames = array('./sampleData/example1.csv',
 './sampleData/example2.csv'
 './sampleData/example3.csv'
);

/** Create a new Reader of the type defined in $inputFileType **/
$objReader = PHPExcel_IOFactory::createReader($inputFileType);

/** Extract the first named file from the array list **/
$inputFileName = array_shift($inputFileNames);
/** Load the initial file to the first worksheet in a PHPExcel Object **/

$objPHPExcel = $objReader->load($inputFileName);
/** Set the worksheet title (to the filename that we've loaded) **/
$objPHPExcel->getActiveSheet()
 ->setTitle(pathinfo($inputFileName,PATHINFO_BASENAME));

/** Loop through all the remaining files in the list **/
foreach($inputFileNames as $sheet => $inputFileName) {
 /** Increment the worksheet index pointer for the Reader **/
 $objReader->setSheetIndex($sheet+1);
 /** Load the current file into a new worksheet in PHPExcel **/
 $objReader->loadIntoExisting($inputFileName,$objPHPExcel);
 /** Set the worksheet title (to the filename that we've loaded) **/
 $objPHPExcel->getActiveSheet()
 ->setTitle(pathinfo($inputFileName,PATHINFO_BASENAME));
}

See Examples/Reader/exampleReader13.php for a working example of this code.

Note that using the same sheet index for multiple sheets won't append files into the same
sheet, but overwrite the results of the previous load. You cannot load multiple CSV files
into the same worksheet.

Combining Multiple Files into a Single PHPExcel Object applies to:

Excel2007 NO Excel5 NO Excel2003XML NO
OOCalc NO SYLK YES Gnumeric NO
CSV YES

PHPExcel User Documentation – Reading Spreadsheet Files 13

5.5. Combining Read Filters with the setSheetIndex() method to
split a large CSV file across multiple Worksheets
An Excel5 BIFF .xls file is limited to 65536 rows in a worksheet, while the Excel2007
Microsoft Office Open XML SpreadsheetML .xlsx file is limited to 1,048,576 rows in a
worksheet; but a CSV file is not limited other than by available disk space. This means
that we wouldn’t ordinarily be able to read all the rows from a very large CSV file that
exceeded those limits, and save it as an Excel5 or Excel2007 file. However, by using Read
Filters to read the CSV file in “chunks” (using the chunkReadFilter Class that we defined in
section above), and the setSheetIndex() method of the $objReader, we can split the CSV
file across several individual worksheets.

$inputFileType = 'CSV';
$inputFileName = './sampleData/example2.csv';

echo 'Loading file ',pathinfo($inputFileName,PATHINFO_BASENAME),' using IOF
actory with a defined reader type of ',$inputFileType,'
';
/** Create a new Reader of the type defined in $inputFileType **/
$objReader = PHPExcel_IOFactory::createReader($inputFileType);

/** Define how many rows we want to read for each "chunk" **/
$chunkSize = 65530;
/** Create a new Instance of our Read Filter **/
$chunkFilter = new chunkReadFilter();

/** Tell the Reader that we want to use the Read Filter **/
/** and that we want to store it in contiguous rows/columns **/
$objReader->setReadFilter($chunkFilter)
 ->setContiguous(true);

/** Instantiate a new PHPExcel object manually **/
$objPHPExcel = new PHPExcel();

/** Set a sheet index **/
$sheet = 0;
/** Loop to read our worksheet in "chunk size" blocks **/
/** $startRow is set to 2 initially because we always read the headings
 in row #1 **/
for ($startRow = 2; $startRow <= 1000000; $startRow += $chunkSize) {
 /** Tell the Read Filter which rows we want to read this loop **/
 $chunkFilter->setRows($startRow,$chunkSize);

 /** Increment the worksheet index pointer for the Reader **/
 $objReader->setSheetIndex($sheet);
 /** Load only the rows that match our filter into a new worksheet **/

 $objReader->loadIntoExisting($inputFileName,$objPHPExcel);
 /** Set the worksheet title for the sheet that we've justloaded) **/
 /** and increment the sheet index as well **/
 $objPHPExcel->getActiveSheet()->setTitle('Country Data #'.(++$sheet));
}

See Examples/Reader/exampleReader14.php for a working example of this code.

This code will read 65,530 rows at a time from the CSV file that we’re loading, and store
each “chunk” in a new worksheet.

PHPExcel User Documentation – Reading Spreadsheet Files 14

The setContiguous() method for the Reader is important here. It is applicable only when
working with a Read Filter, and identifies whether or not the cells should be stored by
their position within the CSV file, or their position relative to the filter.
For example, if the filter returned true for cells in the range B2:C3, then with
setContiguous set to false (the default) these would be loaded as B2:C3 in the PHPExcel
object; but with setContiguous set to true, they would be loaded as A1:B2.

Splitting a single loaded file across multiple worksheets applies to:

Excel2007 NO Excel5 NO Excel2003XML NO
OOCalc NO SYLK NO Gnumeric NO
CSV YES

PHPExcel User Documentation – Reading Spreadsheet Files 15

5.6. Pipe or Tab Separated Value Files
The CSV loader defaults to loading a file where comma is used as the separator, but you
can modify this to load tab- or pipe-separated value files using the setDelimiter() method.

$inputFileType = 'CSV';
$inputFileName = './sampleData/example1.tsv';

/** Create a new Reader of the type defined in $inputFileType **/
$objReader = PHPExcel_IOFactory::createReader($inputFileType);
/** Set the delimiter to a TAB character **/
$objReader->setDelimiter("\t");
// $objReader->setDelimiter('|');

/** Load the file to a PHPExcel Object **/
$objPHPExcel = $objReader->load($inputFileName);

See Examples/Reader/exampleReader15.php for a working example of this code.

In addition to the delimiter, you can also use the following methods to set other attributes
for the data load:

setEnclosure() default is "
setLineEnding() default is PHP_EOL
setInputEncoding() default is UTF-8

Setting CSV delimiter applies to:

Excel2007 NO Excel5 NO Excel2003XML NO
OOCalc NO SYLK NO Gnumeric NO
CSV YES

PHPExcel User Documentation – Reading Spreadsheet Files 16

5.7. A Brief Word about the Advanced Value Binder
When loading data from a file that contains no formatting information, such as a CSV file,
then data is read either as strings or numbers (float or integer). This means that PHPExcel
does not automatically recognise dates/times (such as “16-Apr-2009” or “13:30”),
booleans (“TRUE” or “FALSE”), percentages (“75%”), hyperlinks
(“http://www.phpexcel.net”), etc as anything other than simple strings. However, you can
apply additional processing that is executed against these values during the load process
within a Value Binder.
A Value Binder is a class that implement the PHPExcel_Cell_IValueBinder interface. It must
contain a bindValue() method that accepts a PHPExcel_Cell and a value as arguments,
and return a boolean true or false that indicates whether the workbook cell has been
populated with the value or not. The Advanced Value Binder implements such a class:
amongst other tests, it identifies a string comprising “TRUE” or “FALSE” (based on locale
settings) and sets it to a boolean; or a number in scientific format (e.g. “1.234e-5”) and
converts it to a float; or dates and times, converting them to their Excel timestamp value
– before storing the value in the cell object. It also sets formatting for strings that are
identified as dates, times or percentages. It could easily be extended to provide
additional handling (including text or cell formatting) when it encountered a hyperlink, or
HTML markup within a CSV file.
So using a Value Binder allows a great deal more flexibility in the loader logic when
reading unformatted text files.

/** Tell PHPExcel that we want to use the Advanced Value Binder **/
PHPExcel_Cell::setValueBinder(new PHPExcel_Cell_AdvancedValueBinder());

$inputFileType = 'CSV';
$inputFileName = './sampleData/example1.tsv';

$objReader = PHPExcel_IOFactory::createReader($inputFileType);
$objReader->setDelimiter("\t");
$objPHPExcel = $objReader->load($inputFileName);

See Examples/Reader/exampleReader15.php for a working example of this code.

Loading using a Value Binder applies to:
Excel2007 NO Excel5 NO Excel2003XML NO
OOCalc NO SYLK NO Gnumeric NO
CSV YES

PHPExcel User Documentation – Reading Spreadsheet Files 17

6. Error Handling
Of course, you should always apply some error handling to your scripts as well. PHPExcel
throws exceptions, so you can wrap all your code that accesses the library methods
within Try/Catch blocks to trap for any problems that are encountered, and deal with them
in an appropriate manner.
The PHPExcel Readers throw a PHPExcel_Reader_Exception.

$inputFileName = './sampleData/example-1.xls';

try {
 /** Load $inputFileName to a PHPExcel Object **/
 $objPHPExcel = PHPExcel_IOFactory::load($inputFileName);
} catch(PHPExcel_Reader_Exception $e) {
 die('Error loading file: '.$e->getMessage());
}

See Examples/Reader/exampleReader16.php for a working example of this code.

PHPExcel User Documentation – Reading Spreadsheet Files 18

7. Helper Methods
You can retrieve a list of worksheet names contained in a file without loading the whole
file by using the Reader’s listWorksheetNames() method; similarly, a listWorksheetInfo()
method will retrieve the dimensions of worksheet in a file without needing to load and
parse the whole file.

The listWorksheetNames() method returns a simple array listing each worksheet name
within the workbook:

$objReader = PHPExcel_IOFactory::createReader($inputFileType);
$worksheetNames = $objReader->listWorksheetNames($inputFileName);

echo '<h3>Worksheet Names</h3>';
echo '';
foreach ($worksheetNames as $worksheetName) {

echo '', $worksheetName, '';
}
echo '';

See Examples/Reader/exampleReader18.php for a working example of this code.

The listWorksheetInfo() method returns a nested array, with each entry listing the name
and dimensions for a worksheet:

$objReader = PHPExcel_IOFactory::createReader($inputFileType);
$worksheetData = $objReader->listWorksheetInfo($inputFileName);

echo '<h3>Worksheet Information</h3>';
echo '';
foreach ($worksheetData as $worksheet) {

echo '', $worksheet['worksheetName'], '
';
echo 'Rows: ', $worksheet['totalRows'],

' Columns: ', $worksheet['totalColumns'], '
';
echo 'Cell Range: A1:',

$worksheet['lastColumnLetter'], $worksheet['totalRows'];
echo '';

}
echo '';

See Examples/Reader/exampleReader19.php for a working example of this code.

PHPExcel User Documentation – Reading Spreadsheet Files 19

	Contents
	1. Spreadsheet File Formats
	Excel5
	Excel2003XML
	Excel2007
	OOCalc
	SYLK
	Gnumeric
	CSV

	2. Security
	3. Loading a Spreadsheet File
	4. Creating a Reader and Loading a Spreadsheet File
	5. Spreadsheet Reader Options
	5.1. Reading Only Data from a Spreadsheet File
	5.2. Reading Only Named WorkSheets from a File
	5.3. Reading Only Specific Columns and Rows from a File (Read Filters)
	5.4. Combining Multiple Files into a Single PHPExcel Object
	5.5. Combining Read Filters with the setSheetIndex() method to split a large CSV file across multiple Worksheets
	5.6. Pipe or Tab Separated Value Files
	5.7. A Brief Word about the Advanced Value Binder

	6. Error Handling
	7. Helper Methods

